Keyword

Carbon concentrations in suspended particulate material

7 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Representation types
Update frequencies
From 1 - 7 / 7
  • Categories  

    The LOCATE (Land Ocean CArbon TransfEr) project in the UK consists of measurements of dissolved organic carbon (DOC), nutrients, temperature, salinity, alkalinity and sediment in rivers and estuaries combined with a terrestrial model to predict the future evolution of the land ocean carbon flux. LOCATE samples identify the amount of organic carbon, washed from soils, enters the oceans, with emphasis on estuaries and coastal waters. The LOCATE project integrates knowledge and skills across NERC terrestrial, freshwater and marine research centres to transform the UK’s ability to measure, model and predict land-ocean fluxes in a changing environment. LOCATE is a collaboration between the National Oceanography Centre (NOC), the Centre for Ecology and Hydrology (CEH), the British Geological Survey (BGS) and the Plymouth Marine Laboratory (PML). LOCATE is funded by the Natural Environment Research Council (NERC) from 2016 until 2021. The estuarine and oceanographic data are held by the British Oceanographic Data Centre (BODC), the river data are held by the Environmental Information Data Centre (EIDC).

  • Categories  

    The COMICS (Controls over Ocean Mesopelagic Interior Carbon Storage) project consists of observations, at sea, of particle flux and stable isotopes. It applies organic geochemical and molecular biological techniques to samples collected using nets and traps. The study areas are the tropical Atlantic and Southern Oceans. The results will be combined with models to quantify the flow of carbon in the ocean’s ‘twilight’ zone in order to accurately model global climate change. This ‘twilight’ zone is the part of the ocean between 100m and 1000m below the sea surface, where only a small amount of light from the sun can still penetrate. By investigating carbon dynamics in the ocean interior, COMICS will help to improve predictions of future global climate change. The COMICS project is led by the National Oceanography Centre and is a collaboration between the British Antarctic Survey and the universities of Queen Mary London, Liverpool, Oxford and Southampton. The project received funding from the Natural Environmental Research Council and runs between 2017 and 2022.

  • Categories  

    The cross-disciplinary themes will result in a diverse data catalogue. The ship collected data will be in the form of sea surface meteorology (2-D wind speed and direction, total irradiance, Photosynthetically Active Radiation/PAR, air temperature, atmospheric pressure, humidity); atmospheric carbon dioxide (pCO2); biological, chemical and physical properties and processes in the marine photic zone (carbonate chemistry - pCO2, total alkalinity, pH, DIC; dissolved gases - oxygen; nutrient concentrations, ammonium regeneration, nitrification, nitrogen fixation, zooplankon ecology, chlorophyll concentration, photosynthetic pigment composition, bacterial production, phytoplankton and bacterial speciation, concentrations of biogenic trace compounds such as dimethyl sulphide/DMS and dimthylsulphoniopropionate/DMSP, salinity, temperature, zooplankon ecology) and bioassays of these same parameters under different future IPCC CO2 and temperature scenarios. The long-term (18 month) laboratory based mesocosm experiments will include data on individual organism response (growth, immune response, reproductive fitness) under different future IPCC CO2 and temperature scenarios in rocky intertidal, soft sediment and calcareous biogenic habitats, as well as the effects on commercially important species of fish and shellfish. The analysis of sediment cores will provide greater resolution of the paleo record during the Paleocene-Eocene Thermal Maximum (PETM). Data will be used to aid the parameterisation of coastal and continental shelf seas (Northern Europe and the Arctic) model runs as well as larger scale global models. The shipboard fieldwork will take place around the UK, in the Arctic Ocean and the Southern Ocean. The mesocosms will look at temperate marine species common to UK shelf seas. Sediment cores have been collected from Tanzania. The models will look from the coastal seas of Northern Europe to the whole globe. Data to be generated will include data collected at sea, short-term (2-3 day) ship-board bioassays, from long-term (18 month) laboratory based mesocosm experiments and reconstructed paleo records from sediment cores. The 5 year UK Ocean Acidification Research Programme is the UK’s response to growing concerns over ocean acidification. Aims: 1 - to reduce uncertainties in predictions of carbonate chemistry changes and their effects on marine biogeochemistry, ecosystems and other components of the Earth System; 2 - to understand the responses to ocean acidification, and other climate change related stressors, by marine organisms, biodiversity and ecosystems and to improve understanding of their resistance or susceptibility to acidification; 3 - to provide data and effective advice to policy makers and managers of marine bioresources on the potential size and timescale of risks, to allow for development of appropriate mitigation and adaptation strategies. The study unites over 100 marine scientists from 27 institutions across the UK. It is jointly funded by Department for Environment, Food and Rural Affairs (Defra), the Natural Environment Research Council (NERC) and Department of Energy and Climate Change (DECC).

  • Categories  

    This dataset consists of measurements of temperature, pressure and depth collected using conductivity-temperature-depth (CTD) casts, chlorophyll, water chemistry and biogenic silica data taken from CTD and underway samples, and underway meteorology, navigation and sea surface hydrography. Data were collected in the Southern Ocean, specifically the Drake Passage, Weddell Sea and Powell Basin, on the RRS James Clark Ross cruises JR255A (20th January to 03rd February 2012) and recovery cruise JR255B (04th February 22nd March 2012) Biogenic silica and chlorophyll samples were collected from the non-toxic underway and CTD Niskin bottles, filtered, dried and processed spectrophotometrically post-cruise. Similarly, water chemistry samples were collected, filtered and dried before post-cruise processing with an elemental analyser. A SeaBird CTD rosette was launched at stations throughout the cruise collecting temperature, pressure and depth values with an attached deep ocean thermometer collecting temperature data which were used to calibrate the CTD data. The underway oceanlogger was running through the duration of the cruises, excepting times for cleaning, entering and leaving port, and while alongside. The data were collected as part of the “Gliders: Excellent New Tools for Observing the Ocean (GENTOO)” project. The objectives of the GENTOO project are: (i) To quantify and understand the possible new source of dense water overflow and its variability; to determine the outflow's potential as an early indicator of Antarctic climate change; to assess the impact of changing dense overflows on the locations and strengths of the surface currents and frontal jets; to provide valuable constraints for climate models that describe how changes in ocean circulation feedback on and regulate climate change in polar latitudes. (ii) To determine the krill biomass distribution and (temporal and spatial) variability to the east of the Antarctic Peninsula and its likely impact on the circumpolar krill ecosystem; to assess the impact of any variations in the location of the frontal jets (from objective i) on the krill biomass distribution; to alleviate a severe regional lack of field data on krill, a key species in the Antarctic food web. To achieve the two objectives, our technological deliverable is a critical evaluation of our ability to measure (a) current velocity from a glider and (b) krill biomass from a glider. The data were collected under NERC lead grant NE/H01439X/1, with child grants NE/H014217/1, NE/H014756/1 and NE/H015078/1. The principal investigators were Prof. Karen Heywood,University of East Anglia, Environmental Sciences, Prof. Gwyn Griffiths, National Oceanography Centre, Science and Technology, Dr. Sophie Fielding, NERC British Antarctic Survey, Science Programmes and Dr. Stuart Bruce Dalziel, University of Cambridge, Applied Maths and Theoretical Physics, respectively. With regard the samples data (Biogenic silica, water chemistry and chlorophyll) it is important to note that these data ARE NOT the property of NERC. They belong to Walker Smith of the Virginia Institute of Marine Science(VIMS) who has supplied them in support of GENTOO. As such, he must be credited for use of the data. The CTD and underway navigation, meteorology and sea surface hydrography data have been received by BODC as raw files from the RRS James Clark Ross, are currently being processed and are available in raw format from BODC enquiries. The SBE-35 Deep Ocean Thermometer and biogenic silica, chlorophyll-a and particulate organic carbon/nitrogen samples data have been received by BODC as raw files from the RRS James Clark Ross, processed and quality controlled using in-house BODC procedures and will be made available online in the near future.

  • Categories  

    This dataset comprises the following water body parameters: pressure; density; salinity; temperature; fluorescence; oxygen; dissolved inorganic nutrients; dissolved inorganic carbon (DIC); particulate carbon (PC); particulate organic carbon (POC); particulate nitrogen (PN); alkalinity; pH; chlorophyll; photosynthetically active radiation (PAR); delta 15 N isotopic composition of PN and nitrate; delta 13 C isotopic composition of POC; delta 18 O isotopic composition of nitrate; ratio of oxygen isotopes. This dataset also includes dissolved inorganic nutrients in sediment pore water, and major and minor element concentrations in sediment. Data were sampled on the West Antarctic Peninsula (WAP), more specifically in Ryder and Marguerite Bays. Measurements were obtained from either in situ sensors, samples collected by box coring, or by Niskin bottles mounted on the CTD rosette of RRS James Clark Ross during cruises JR20141231 (JR307, JR308) and JR15003 which took place from 31 December 2014 to 07 January 2015 and from 17 December 2015 to 13 January 2016 respectively. Samples were also collected from Niskin bottles deployed with a hand-cranked winch or 12 V electric bilge pump from a rigid-hulled inflatable boat between 16 November 2013 and 21 March 2016. Sediment samples were analysed for major and minor element composition by X-ray fluorescence spectroscopy at the School of Geosciences, University of Edinburgh. This research project aimed to examine the ways in which ongoing climate change and sea ice decline at the WAP impact upon nutrient budgets and biogeochemical cycling throughout the region, and to trace the movement and modification of circumpolar deep water across the WAP shelf and its influence on macronutrient and inorganic carbon supply to productive coastal regions. Data were generated by Sian Henley (University of Edinburgh), Hugh Venables and Michael Meredith (British Antarctic Survey), Elizabeth Jones (University of Groningen), Katharine Hendry (University of Bristol), and Yvonne Firing (NOC Southampton), with funding from NERC Independent Research Fellowship (NE/K010034/1), the University of Edinburgh School of Geosciences, the British Antarctic Survey Polar Oceans Program, the Netherlands Polar Program (NOW), British Antarctic Survey CGS-109, and NERC NC Funding for SR1b repeat transect (PI Firing). Additional contributors to the dataset were Malcolm Woodward (Plymouth Marine Laboratory), Melanie Leng (British Geological Survey) and Colin Chilcott and Nicholas Odling (University of Edinburgh).

  • Categories  

    The dataset includes physical and biogeochemical measurements of water properties, meteorological data and biogeochemical measurements of sediment parameters. Temperature, salinity, turbidity, oxygen, nutrients, dissolved organic carbon/total dissolved nitrogen (DOC/TDN), particulate organic carbon/particulate organic nitrogen (POC/PON), contaminants and pH were measured at most of the data collection sites, with additional biogeochemical measurements collected at various locations. Temperature, salinity and nutrients are available for virtually all data collection campaigns. The data were collected in a number of estuaries around the UK between 1993 and 1997. The Humber estuarine data set was collected during a series of 33 campaigns on the EA vessels Sea Vigil and Water Guardian in the Humber, Trent and Ouse systems at approximately monthly intervals between June 1993 and December 1996. The measurements were taken over two or three one-day cruises that covered the estuary from the tidal limits of both Trent and Ouse to Spurn Point. Instrumental and sample data are available from a series of fixed stations that were sampled during every campaign. The Tweed estuarine data set was collected during a series of 13 campaigns using RV Tamaris and a rigid inflatable vessel at approximately monthly intervals between July 1996 and July 1997. Data were collected throughout the tidal reaches of the River Tweed. The dataset forms part of the NERC Land Ocean Interaction Study project. Key investigators for this LOIS sub-project included Plymouth Marine Laboratory. The data are held in the British Oceanographic Data Centre project database.

  • Categories  

    The data set includes hydrographic profiles (including temperature, salinity, attenuance, chlorophyll, oxygen, irradiance, turbulence, sound velocity and currents), hydrographic time series (temperature, currents, fluorescence, bottom pressure), water samples (>70 parameters measured), sediment samples (>160 parameters measured), sediment trap samples (>10 parameters measured), production experiments and marine snow camera profiles. Additional meteorological and wave records are also available, as well as satellite imagery and underwater photography (water column and seabed). The data were collected on the Hebridean Slope (NW of Ireland) between March 1995 and September 1996. Measurements were collected via a combination of shipboard instrument deployments, including >1,800 conductivity-temperature-depth (CTD) and SeaSoar (undulating oceanographic recorder) profiles, >100 expendable bathythermograph (XBT) profiles, >38,000 acoustic Doppler current profiler (ADCP) profiles, >35 core profiles, >800 turbulence profiles, >40 marine snow camera profiles, >55 radiometer profiles and >25 sound velocity and travel time experiments. Benthic lander deployments were also undertaken, along with shipboard incubation experiments and drifting buoy deployments (48 tracks). An intensive water sampling programme provided >2,500 samples for biological and biogeochemical analysis. An extensive moored instrument array was maintained throughout the experiment, including sediment traps, recording current meters (104 series), electromagnetic current meters (9 series), ADCPs (16 series), thermistor chain and temperature probes (70 series), fluorometers (18 series), transmissometers (16 series), light meter (5 series), bottom pressure recorders (11 series), plus one waverider buoy series and three meteorological buoy time series. The Shelf Edge Study (SES) was an intensive multidisciplinary experiment and formed part of the NERC Land Ocean Interaction Study. The British Oceanographic Data Centre (BODC) assembled over 95% of the data sets collected during SES into its project database system. Once basic quality control procedures had been completed the data set was published, complete with extensive data documentation, on CD-ROM.